[image: https://encrypted-tbn3.google.com/images?q=tbn:ANd9GcTLAZpQzmzAPnXtyNCq1onsRE4y0bvoWlMvd3YA8Lt715oLXEJxWA]IT 4203 Individual Project Milestone #2: Google Books API
Fall 2019
Due Date:	See D2L
Instruction
We will continue the project and use real world web API in this milestone.
Requirements:
· Use Google Books API
· Create the following three pages. Provide a main menu with two items: “home” (book search page) and “my bookshelf”
· Book search page: for users to search books by key terms.
· Use a textbox to accept user input of search terms.
· After the search button is clicked, dynamically construct the service request URL based on the search term and call the service.
· Process the service response (JSON format) and display search results. There is no need to do AJAX at this time, but you can if you understand it and know how to.
· Display the first 60 results (at most) with paging (you can decide the number of results per page and number of pages). Use a dropdown or radiobutton control for page number selection. See more UI patterns at http://ui-patterns.com/patterns/Pagination
· For each book in the result, display book title and a smaller cover image. Then create a link on the title linking to the second page to display detailed information of that book. 
· Book details page: to display all information about a single book.
· Pass the book id parameter from the URL or other means.
· Dynamically constructed the Google Books API URL based on the book id parameter.
· Display as many details as you can about a single book (examine the JSON content), such as title, publisher, authors, description, image, price, etc.
· Organize the information in a decent clean style/layout.
· Your public bookshelf page: you should display books from one of your public bookshelves.
· Create a public bookshelf in your library at the Google Books website (https://books.google.com) and add some your preferred books first. You will do this manually through the Google Books website in this milestone.
· Use the API to get the books in this bookshelf and display them nicely (similar to your search results), with each linked to your book details page.
Other requirements
· Please create a separate folder and style for your milestone #2. Make it independent and look like a web app by its own. You will design your own style but keep them clean and organized. See https://itbook.store for a simple and clean design example.
· Images and URLs should be displayed or function correctly.
· Do not use any other library or framework other than jQuery.
· All web pages should work lively from your public website.
[Challenge/Bonus – 1 point]
Embed book content preview in the book details page, using the Book Preview API (https://developers.google.com/books/docs/viewer/developers_guide)
Submission
Submit the following to D2L:
1. A milestone report in PDF format, including:
· Milestone overview
· The URL to your live project (milestone #2).
· Web page screenshots with explanations. Take a screenshot of each webpage displayed in the browser. Clearly label and describe all screenshots. All screens must be clear, original, and show the complete browser window (only the top part of the page if the page is too long). No graphic editing or cropping is allowed. 
· References (styles, images, etc.)
2. Compress all source code files into a .zip file.
Grading guide
Your grade is determined on:
· How much you have satisfied the requirements specified in the instruction, and your creativity
· Web site/page design quality
· Well-formed and clean code. You should not use any wizard to generate the code, nor should you copy and paste codes from other sources without cleaning it.
· Following the submission requirements 
Rubric:
	Score
	Summary
	Rating Description

	10
	Outstanding work; beyond expectation. 

	Correctly read content from all APIs. Satisfy all requirements.
Excellent web site/page design.
Well-organized files and code; easy-to-read and clean code.

	8-9
	Good work; meet expectations

	Correctly read/display content from all APIs, with possible minor mistakes or missing elements.
Mostly satisfy requirements but with minor issues.
Good web site/page design (neat and clean).
Well-organized files and code; easy-to-read and clean code.

	6-7
	Adequate work;

	Correctly read/display content from all APIs, with quite some mistakes or missing items.
Missing one or two major requirements.
Too simple web page design (missing image or links, or incorrectly displayed).
Have some problems of organizing code; difficult to read. Missing some required submission items.

	<6
	Lack of effort.

	Failed to read content correctly from any API.
Poor web page design (unorganized HTML).
Poor coding practices.
Live website does not work. Fail to follow submission requirements.



Page 1 of 2

image1.jpeg

